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Random Surfaces from Hierarchical Deposition of
Debris with Alternating Rescaling Factors1

A. I. Posazhennikova2 and J. O. Indekeu2, 3

An analytical study of surface profiles that result from hierarchical random
impact of debris on the line is performed in terms of logarithmic fractals theory.
The hierarchical random deposition model is extended for the case of time-
dependent probabilities P (for positioning a hill on the surface) and Q (for
digging a hole) and spatial rescaling factor *. The periodic deposition model is
solved exactly, and the logarithmic fractal roughness of the surface profile is
found to be robust with respect to time-dependent perturbations. The fractal
amplitudes associated with the proliferation of the surface length are compared
with those calculated in the static regime and are shown to have a nontrivial
interaction. It is verified that amplitude repulsion, attraction, neutrality, and
auto-repulsion take place. The transient regime is also studied and is shown to
have exponential decay towards the asymptotic regime. Special attention is
devoted to the case of alternating rescaling factors, for which new results are
derived.
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1. GENERAL INTRODUCTION

A standard Euclidean geometry restricts human imagination, reducing all
the images we can see or feel to combinations of circles, cones, spheres,
cubes, etc. But most natural objects are so irregular and fragmented as to
deserve being called geometrically chaotic. Nature exhibits not simply a
higher degree, but a different level of complexity, compared to Euclidean
geometry.
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In 1975, Mandelbrot introduced the concept of fractal geometry to
characterize the objects of nature quantitatively and to help with an
appreciation and understanding of their underlying regularity [1]. Fractals
are more than fancy, computer generated patterns. The coastline of an
island, a river network, or the structure of a cabbage can be best described
as fractals. Yet, there is no generally accepted definition of a fractal (below
will be given some rigorous ``mathematical'' definition). It can be defined
loosely as a shape made of parts similar to the whole in some sense, i.e.,
fractals tend to be scaling, implying that the degree of their irregularity
and�or fragmentation is identical at all scales.

The simplest way to construct a fractal is to repeat a given operation
over and over again deterministically. The classical example of such a fractal
is the Cantor set. It is created by dividing a line into n equal pieces and
removing (n&m) of the parts created and repeating the process with m
remaining pieces ad infinitum [1, 2].

However, fractals that occur in nature occur through a continuous
random process. For example, we can imagine selecting a line randomly at
a given rate, and dividing it randomly. Starting with a line of given length,
we obtain an infinite number of points, whose properties appear to be
statistically self-similar and characterized by a fractal dimension. This prin-
ciple can be extended to two dimensions to understand fractals in nature
that have both size and shape. But it seems that the phenomenon cannot be
described by a single fractal dimension��infinitely many are required [3].
Thus, the ancient notions of dimension and of symmetry play a central role
in fractal theory.

The fact that basic fractals are dimensionally discordant can serve to
transform the concept of fractal from an intuitive to a mathematical one.
According to a definition, given by Mandelbrot, a fractal is a set for which
the Hausdorff�Besikovitch dimension DF (Mandelbrot calls DF a fractal
dimension) strictly exceeds the topological dimension DT . For example, the
original Cantor set is a fractal, because DF=ln 2�ln 3>0, while DT=0.

Yet borderline cases with DF=DT intuitively deserve to be called
fractals as well. For example, one is very reluctant to call the so-called
Devil's staircase a nonfractal, since it is broken on many length scales in
an obvious fashion. A subset of fractals with DF=DT is referred to as
logarithmic fractals [4], since the Hausdorff measure for such a fractal is
logarithmic:

h(\)=\DF (ln(1�\))21 (1.1)

where \ is the ruler length, DF=DT , and we assume subdimension 21=&1.
Further subdimensions, associated with multiple-logarithmic behavior, can
also occur, but are not taken into account here.
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These marginal fractals have attracted unfairly sparse attention from
physicists, while these models can, for example, describe the patterns that
arise in random sequential deposition of a mixture of particles with a
continuous distribution of sizes on a finite substrate. One can readily see
that with a continuous distribution of sizes the system does not reach a
jamming limit, but instead creates a scale invariant pattern that can be
described as a fractal [5], since the system gains its ergodic nature. Models
of random deposition can rarely be solved analytically. In this paper we
study an exactly solvable model of hierarchical random deposition of
debris on a surface.

2. PERIODIC RANDOM DEPOSITION MODEL

A model for random hierarchical deposition of debris has recently
been proposed [4]. It features fragments of different sizes impacting on a
surface and transforming it into a fractal landscape with unusual geometri-
cal properties. Hierarchy means that the larger objects hit the surface first.
This kind of hierarchy arises naturally, for example, in air or another
viscous medium where due to friction the velocities vary according to frag-
ment weight, size, and shape.

A rescaling factor * controls the size reduction from one generation
to the next. In case of deposition on a line, for example, the number of
fragments N of linear size s, which follows a simple hyperbolic law, similar
to the distribution found for meteors hitting celestial bodies in our solar
system, is given by:

N(s)=*2N(s�*) (2.2)

The deposition process is considered to be random, and the deposition
segments are independent.

The falling fragments are squares of different sizes, representing the
debris of some ``explosion.'' The deposition of a square hill is described by
probability P. In addition to different sizes and shapes, fragments can pos-
sess different hardness or reactivity. That means that falling segments can
also ``dig'' a square hole with probability Q (with P+Q�1). Thus, the
substrate can be characterized by inhomogeneous penetrability.

Originally [4] the probabilities P and Q, and rescaling factor * were
assumed to be the fixed parameters. In the present paper we consider the
dynamic generalization [6] of the ``static'' model [4] for the case of time-
dependent parameters: P, Q, and *. It is clear that this ``periodic'' model is
more realistic from a physical point of view. Assuming P, Q, and rescaling
factor * time-dependent, we can model situations with deposition of debris
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Fig. 1a, b. The deterministic case of the deposition of debris, injected
from two sources. The rescaling factor * alternates between two
values: *1=2 and *2=3. Figure 1b exemplifies the resulting surface
profile after four generations (2 periods). The profile has been
repeated once in the horizontal direction, along the substrate.
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originating from multiple sources. Each source produces its own ``particles''
with specific characteristics: mass, size distribution, and impact capacity.
This means that each source can be characterized by its own P, Q, and
rescaling factor *. Thus, the process with period 2 can correspond to two
sources, which are active serially and independently. For example, we can
think of two alternating beams of laser-evaporated atomic clusters that hit
a target surface. This can nowadays be achieved experimentally [7, 8].
Another attractive characteristic of the ``periodic'' model is that it also pos-
sesses logarithmic fractal properties and can still be solved analytically.

The deterministic case for the rescaling factor, alternating between
*1=2 and *2=3, is shown in Fig. 1. Two sources, injecting particles of two
types, are depicted on Fig. 1a. Figure 1b illustrates the surface profile after
four generations in the above mentioned periodic process and a random
process with probability of deposition of square hills alternating between

Fig. 2. A random landscape corresponding to *1=2 and *2=3, and P1=1�2 and
P2=1�3. The result after four generations (2 periods) is shown. Also shown are the
profiles of the first, second (thick line), and third generations.
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P1=1�2 and P2=1�3 is shown in Fig. 2 for the same choice of rescalings
*1=2 and *2=3.

3. ALTERNATING P AND Q: ASYMPTOTIC REGIME

Let us assume that P and Q alternate between two sets of values
(P1 , Q1) and (P2 , Q2), while the rescaling factor is fixed: *1=*2=*, i.e.,
we consider the periodic process with a period equal to two generations.
We take *�3. The case *=2 is special [4].

In the case of fixed P and Q, the analytic solution for the average
length of the profile (length increment) in the n th generation is derived
along the lines of previous work [4] and for the periodic boundary condi-
tions has the following form:

2Ln=*&n :
*n

i=1

2(P(1&P)+Q(1&Q))[1&W (n&1)
i ] (3.3)

The sum of W (n&1)
i over i equals the average number of points occupied by

at least one wall (vertical segment placed on points between horizontal
segments) after n&1 generations:

:
*n

i=1

W (n&1)
i = :

n&1

m=1

*m 2Lm

(:$+2:")
(3.4)

In this expression the functions :$ and :" are defined as follows,

:$=(P+Q)(1&(P+Q))�(P(1&P)+Q(1&Q)&PQ)
(3.5)

:"=PQ�(P(1&P)+Q(1&Q)&PQ)

While depositing progresses from one generation n to the next (n+1),
the average length increment converges rather fast to some constant
asymptotic value 2L� , which does not depend on n:

2L�(P, Q, *)=
2(P(1&P)+Q(1&Q))

1+2(P(1&P)+Q(1&Q)&PQ)�(*&1)
(3.6)

This is a very important property of so-called logarithmic fractals.
In the case of dynamical perturbations, we should rewrite this formula

taking into account that P and Q alternate between two sets of values.
Thus, in the periodic deposition model [6], instead of one asymptotic
value two n-independent length increments arise: 2L�, odd and 2L�, even :
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2L�, odd =2L�, 1 {1+
*(;1&;2)

*2&1+;1+;2&;1;2=
(3.7)

2L�, even=2L�, 2 {1&
*(;1&;2)

*2&1+;1+;2&;1;2=
where

;i=2(Pi (1&Pi)+Q i (1&Qi)&PiQ i) (3.8)

and

2L�, 1=2L�(P1 , Q1 , *)
(3.9)

2L�, 2=2L�(P2 , Q2 , *)

Thus, in the time-dependent case we have the coexistence of two
converging processes: one with odd n and one with even n. The periodic
process again leads to a logarithmic fractal with effective rescaling factor
*1 *2 (which equals *2) and a fractal amplitude equal to the sum 2L�, odd+
2L�, even on the time scale of one period. This shows that the basic property
of the model is robust with respect to the dynamical perturbation.

Since the values for static and dynamical asymptotic amplitudes do
not coincide (for ;1{;2), one can describe the periodic process in terms of
``interaction.'' For ;1{;2 either repulsion or attraction of amplitudes takes
place. Note that in view of the ``+'' and ``&'' signs in front of the amplitude
shifts implied by Eq. (3.7), the amplitudes are shifted from there bare
values in opposite directions. The condition ;1=;2 corresponds to so-
called neutrality, when amplitudes 2L�, odd and 2L�, even do not ``interact,''
i.e., do not move away from their bare values for the static case.

The nature of amplitude interaction can be exemplified by investigat-
ing in more detail the special period-2 case (Fig. 3). We fix P1=0.15,
Q1=0.7, Q2=0.2, and *=3 and plot P2-dependences for the fractal
amplitudes of static and periodic processes. The bare amplitudes are given
by the thin lines, and the thick lines show the result of the interaction.
Thus, 2L�, odd and 2L�, even coincide for P2$0.213 and P2$0.755. The
static amplitudes intersect only for P2$0.269. For the neutral points we
have P2$0.104 and P2$0.696.

4. ALTERNATING P AND Q: TRANSIENT REGIME

For the periodic model described in Section 3, it is also interesting to
study the transient regime, which again can be calculated exactly. The
transient regime refers to a law, according to which the average length
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Fig. 3. Amplitude repulsion, neutrality, attraction, coincidence, and auto-repulsion.
In this period-2 process with *=3 we have set Q1=0.7, Q2=0.2, and let P alternate
between P1=0.15 and P2 . For P2<0.104 there is amplitude repulsion. Then, at
P2$0.104 the condition of neutrality is satisfied, and the amplitudes do not move away
from their bare static values (points N ). For larger P2 a regime of amplitude attraction
is found, culminating at point C in the coincidence of the amplitudes. At somewhat larger
P2 the amplitudes again repel. At the special point of auto-repulsion AR the bare static
amplitudes coincide, but the amplitudes repel each other fairly strongly in the period-2
process. The same scenario is repeated in the vicinity of the second point of coincidence
at P2$0.755.

increment of the profile, 2Ln , converges to its asymptotic value 2L� . In
the static case this law is exponential.

We can define the transients as:

=n#2Ln&2L�, odd
(4.10)

=n+1#2Ln+1&2L�, even

where we assume odd values of n.
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After some algebra the result can be written in the following form [6]:

2Ln=2L�, odd {1+
;1+*;2&;1;2

(*&1)(*+1&;2) \ *2

(1&;1)(1&;2)+
(1&n)�2

=
(4.11)

2Ln+1=2L�, even {1+
;1+*;2&;1;2

(*&1)(*+1&;1) \ *2

(1&;1)(1&;2)+
(1&n)�2

\1&;1

* +=
From here one can see that the transient decays exponentially fast but not
necessarily monotonically. The odd and even transients interact in the
sense that they differ from the transients of the respective static processes.
This is quite natural, however, since the asymptotic amplitudes interact. It
can be shown that in the absence of interaction (neutrality condition), the
period-2 transient alternates exactly between the two transients for the
respective static processes.

5. ALTERNATING RESCALING: ASYMPTOTIC REGIME

As a final example we consider in detail a periodic process with the
rescaling factor * alternating between two values: *1 and *2 . In a previous
paper this case was treated for the special choice *2=*2

1 and Q=0 only
[6]. For simplicity we will be keeping the probabilities P and Q fixed:
P1=P2=P and Q1=Q2=Q. The logarithmic fractal feature is robust with
respect to alternating rescaling as well. For P=0 or Q=0 our calculation
is valid for *1�2 and *2�2, while for P{0{Q the range of validity is
reduced to *1�3 and *2�3, due to wall-leveling [4].

We start out from the coupled implicit equations, originating from
Eq. (3.3), assuming odd n:

2Ln=
1

N(n)
:

N(n)

i=1

2(P(1&P)+Q(1&Q))[1&W (n&1)
i ]

(5.12)

2Ln+1=
1

N$(n)
:

N$(n)

i=1

2(P(1&P)+Q(1&Q))[1&W (n)
i ]

where

:
N(n)

i=1

W (n&1)
i = :

n&2

m=1, odd

N(m)
2Lm

:$+2:"
+ :

n&1

m=2, even

N$(m&1)
2Lm

:$+2:"
(5.13)

:
N$(n)

i=1

W (n)
i = :

n

m=1, odd

N$(m)
2Lm

:$+2:"
+ :

n&1

m=2, even

N$(m&1)
2Lm

:$+2:"

where N(n)=* (n+1)�2
1 * (n&1)�2

2 and N$(n)=* (n+1)�2
1 * (n+1)�2

2 .
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In order to obtain the asymptotic behavior, we replace the nonzero
length increments by their fixed point values: 2Ln � 2L�, odd and 2Ln+1

� 2L�, even . After some algebraic calculations we obtain the following
coupled equations:

2L�, odd=a&
;

*1*2&1
2L�, odd&

;*2

*1*2&1
2L�, even

(5.14)

2L�, even=a&
;*1

*1*2&1
2L�, odd&

;
*1*2&1

2L�, even

where we set a=2(P(1&P)+Q(1&Q)) and ; is defined in accordance
with Eq. (3.8).

Finally we obtain for the asymptotic amplitudes in the periodic model:

2L�, odd=2L�, 1 \1+
(*2&*1) ;(1&;)

(*1&1)(*1 *2&1+2;&;2)+
(5.15)

2L�, even=2L�, 2 \1&
(*2&*1) ;(1&;)

(*2&1)(*1*2&1+2;&;2)+
where 2L�, 1 , 2L�, 2 are correspondingly 2L�(P, Q, *1) and 2L�(P, Q, *2)
from Eq. (3.6).

The amplitudes for an alternating-* process with *1=2 and *2=4 are
shown in Fig. 4. The P-dependence of the static and dynamic fractal
amplitudes for Q=0 is depicted. Amplitude attraction takes place for all P.
We considered Q=0 because only under this condition * can be equal to 2,
without involving wall-leveling corrections [4].

Figure 5 exemplifies a similar process with *1=3 and *2=8, and Q
nonzero: Q=0.3. Hence, the physical range for probability P is 0�P�0.7.
Again only attraction between the amplitudes occurs. For alternating re-
scalings there is always amplitude attraction, as is seen from the structure
of Eq. (5.15). For instance, for *2>*1 , we have 2L�, odd>2L�, 1 and
2L�, even<2L�, 2 . Furthermore, from Eq. (3.6) follows 2L�, 1<2L�, 2 , so
that the dynamic amplitudes lie between the static ones.

6. CONCLUSIONS

In this paper we have analyzed a model for hierarchical random deposi-
tion of debris, taking into account various possible dynamical extensions.
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Fig. 4. Fractal amplitudes for a periodic process in which only the spatial rescaling
factor alternates. We assume the probability for digging holes Q to be zero; hence, we
can consider * alternating between *1=2 and *2=4. The plot is symmetric and
fractal amplitude attraction takes place for any probability P of putting a hill on the
surface.

Namely, we have assumed that the deposition parameters are time-depen-
dent with period 2. We let the probabilities for depositing hills, P, and
holes, Q, alternate between two sets of values, while keeping the rescaling
factor * fixed, and another case is that of alternating * and constant P
and Q. In all cases we have shown that the main property of the random
deposition model��its logarithmic fractal surface roughness��remains
invariant under periodic perturbation.

We have compared our results with those for the static case and
interpreted them in terms of an interaction. In the general case P{0{Q
periodically varying parameters lead to amplitude interactions which may
be repulsive, attractive, or neutral, depending on the specific choice of
parameters.
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Fig. 5. Fractal amplitudes for a periodic process with * alternating between *1=3
and *2=8 and nonzero probability of digging a hole Q=0.3. The physical range for
probability P of depositing a hill is 0�P�0.7. The fractal amplitudes attract for all P.

We have extended the exact results previously obtained [6] by
calculating the asymptotic amplitudes for arbitrary alternating rescaling
factors, *1 and *2 , with *1�3 and *2�3. We have shown that alternating
rescalings lead to amplitude attraction, if P and Q are assumed to be
constant.
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